The Changing Clinicopathological Profile of Ameloblastoma: An update


  

Ameloblastoma (AM) is a locally aggressive benign expansible odontogenic tumor that shows a variety of clinicopathological features. AM reveals a slight preference for affecting males near their third decades with a high rate of local recurrence after resection [1]. Histologically, there are four phenotypes of AM: solid/multicystic, peripheral, desmoplastic and unicystic types. Solid/multicystic shows diverse subtypes. Although evidence on the molecular involvement of BRAF V600E mutant gene in the oncogenesis of mandibular AM and SMO in maxillary AM can be accepted now, surgical resection is the standard treatment because molecular-based therapy is still lagging [2–4]. Synchronous association of AM with other syndromes were observed in Gorlin syndrome, Gardner syndromes, epidermal nevus syndrome, Simpson-Golabi-Behmel Syndrome and Williams’ syndrome[5, 6].

Malignant transformation of AM into primary intraosseous carcinoma, squamous cell carcinoma has been reported. There are high hopes for finding a molecular signature malignant ameloblastoma (either metastasizing ameloblastoma or ameloblastic carcinoma) or an immunohistochemical marker that would be of high sensitivity and specificity to distinguish the diverse ameloblastomatous lesions (with intraoral and extraoral onsets). The absence of any distinguishing histological features or immunohistochemical markers for malignant AM, when compared to benign AM, challenges its early detection[3, 7].

The controversy on the best surgical treatment approach for managing AM is attributed to several factors. First, the solid/multicystic, peripheral, desmoplastic and unicystic types demonstrate a different clinical behavior in terms of aggressiveness, response to conservative treatment (e.g., enucleation with Carnoy's solution) and recurrence. However, the many phenotypes solid/multicystic reveals, including follicular, plexiform, acanthomatous, hemangiomatous, adenoid, granular, basal, mucinous, keratoameloblastoma, adenoid and hybrid AMs do not demonstrate any significant clinicopathological behavior [3]. Second, several clinical parameters, such as the age of the patient, date of diagnosis, quality of bone, concomitant systematic disease, syndromic association with other lesions, and general health of the patient are reported to affect the invasiveness of AM. The most recent systematic review on the surgical management of AM recommends the radical treatment for both unicystic and solid or multicystic AM, although the included studies do not consider any of the clinical parameters mentioned above[8]. Third, Although recent molecular pathogenetic discoveries have proven promising in mitigating the aggressiveness of several cases when used as adjunctive therapy to reduce the size of AM, maxillofacial surgeons tend to treat the tumor by surgical resection [7].

Approximately 1,800 research articles and reviews were published about AM over the past ten years. Most of these publications delve into discussing the histological nuance of the subtypes of the conventional AM and call for new pathological taxonomies. However, only 10-20 % of these articles contribute to the effective treatment of AM [2, 9–12]. The genomic findings that may explain the molecular oncogenesis is shown in Table 1.

 

 

Table 1. Genes commonly involved in the pathogenesis of ameloblastoma

Gene

Chromosome

Aliases

PTGS2

 1

COX-2, COX2, GRIPGHS, PGG/HS, PGHS-2, PHS-2, hCox-2

CDC42

 1

CDC42Hs, G25K, TKS

HSPG2

 1

HSPG, PLC, PRCAN, SJA, SJS, SJS1

SDC1

 2

CD138, SDC, SYND1, syndecan

IL1A

 2

IL-1 alpha, IL-1A, IL1, IL1-ALPHA, IL1F1

HSPD1

 2

CPN60, GROEL, HLD4, HSP-60, HSP60, HSP65, HuCHA60, SPG13

BMPR2

 2

BMPR-II, BMPR3, BMR2, BRK-3, POVD1, PPH1, T-ALK

RHOB

 2

ARH6, ARHB, MST081, MSTP081, RHOH6

WIPF1

 2

PRPL-2, WAS2, WASPIP, WIP

RHOA

 3

ARH12, ARHA, EDFAOB, RHO12, RHOH12

MME

 3

CALLA, CD10, CMT2T, NEP, SCA43, SFE

BAP1

 3

HUCEP-13, UCHL2, hucep-6

PIK3CB

 3

P110BETA, PI3K, PI3KBETA, PIK3C1

DAG1

 3

156DAG, A3a, AGRNR, DAG, LGMDR16, MDDGA9, MDDGC7, MDDGC9

GNL3

 3

C77032, E2IG3, NNP47, NS

CXCL8

 4

GCP-1, GCP1, IL8, LECT, LUCT, LYNAP, MDNCF, MONAP, NAF, NAP-1, NAP1, SCYB8

SPARC

 5

BM-40, OI17, ON, ONT

PPP2CA

 5

NEDLBA, PP2Ac, PP2CA, PP2Calpha, RP-C

TERT

 5

CMM9, DKCA2, DKCB4, EST2, PFBMFT1, TCS1, TP2, TRT, hEST2, hTRT

FGF10

 5

 

CDKN1A

 6

CAP20, CDKN1, CIP1, MDA-6, P21, SDI1, WAF1, p21CIP1

BRAF

 7

B-RAF1, B-raf1, NS7, RAFB1, BRAF

EGFR

 7

ERBB, ERBB1, ERRP, HER1, NISBD2, PIG61, mENA

IL6

 7

BSF-2, BSF2, CDF, HGF, HSF, IFN-beta-2, IFNB2, IL-6

SHH

 7

HHG1, HLP3, HPE3, MCOPCB5, SMMCI, ShhNC, TPT, TPTPS

SMO

 7

CRJS, FZD11, Gx, PHLSH, SMO

TWIST1

 7

ACS3, BPES2, BPES3, CRS, CRS1, CSO, SCS, SWCOS, TWIST, bHLHa38

WASL

 7

N-WASP, NWASP, WASPB

PTK2

 8

FADK, FADK 1, FAK, FAK1, FRNK, PPP1R71, p125FAK, pp125FAK

SNAI2

 8

SLUG, SLUGH, SLUGH1, SNAIL2, WS2D

PTCH1

 9

BCNS, NBCCS, PTC, PTC1, PTCH

NOTCH1

 9

AOS5, AOVD1, TAN1, hN1

RECK

 9

ST15

IL33

 9

C9orf26, DVS27, IL1F11, NF-HEV, NFEHEV

ENG

 9

END, HHT1, ORW1

PLIN2

 9

ADFP, ADRP

PTEN

 10

10q23del, BZS, CWS1, DEC, GLM2, MHAM, MMAC11, PTENbeta, TEP1, PTEN

MKI67

 10

KIA, MIB-, MIB-1, PPP1R105

ITGB1

 10

CD29, FNRB, GPIIA, MDF2, MSK12, VLA-BETA, VLAB

FGFR2

 10

BBDS, BEK, BFR-1, CD332, CEK3, CFD1, ECT1, JWS, K-SAM, KGFR, TK14, TK25

BMPR1A

 10

10q23del, ACVRLK3, ALK3, CD292, SKR5

YAP1

 11

COB1, YAP, YAP2, YAP65, YKI

NCAM1

 11

CD56, MSK39, NCAM

CTTN

 11

EMS1

MAML2

 11

MAM-3, MAM2, MAM3, MLL-MAML2

MDM2

 12

ACTFS, HDMX, LSKB, hdm2

KRAS

 12

'C-K-RAS, C-K-RAS, CFC2, K-RAS2A, K-RAS2B, K-RAS4A, K-RAS4B, K-Ras, K-Ras 2, KI-RAS1, KRAS2, NS, NS3, OES, RALD, RASK2, c-Ki-ras, c-Ki-ras2, KRAS

CDKN1B

 12

CDKN4, KIP1, MEN1B, MEN4, P27KIP1

TNFRSF1A

 12

CD120a, FPF, TBP1, TNF-R, TNF-R-I, TNF-R55, TNFAR, TNFR1, TNFR55, TNFR60, p55, p55-R, p60

GLI1

 12

GLI, PAPA8, PPD1

HOXC13

 12

ECTD9, HOX3, HOX3G

HOXC13-AS

 12

HOXC-AS5

TNFSF11

 13

CD254, ODF, OPGL, OPTB2, RANKL, TNLG6B, TRANCE, hRANKL2, sOdf

POSTN

 13

OSF-2, OSF2, PDLPOSTN, PN

MMP14

 14

MMP-14, MMP-X1, MT-MMP, MT-MMP 1, MT1-MMP, MT1MMP, MTMMP1, WNCHRS

FAM30A

 14

C14orf110, HSPC053, KIAA0125

HIF1A

 14

HIF-1-alpha, HIF-1A, HIF-1alpha, HIF1, HIF1-ALPHA, MOP1, PASD8, bHLHe78

BMP4

 14

BMP2B, BMP2B1, MCOPS6, OFC11, ZYME

FOS

 14

AP-1, C-FOS, p55

FGF7

 15

HBGF-7, KGF

PLIN1

 15

FPLD4, PERI, PLIN

CDH1

 16

Arc-1, BCDS1, CD324, CDHE, ECAD, LCAM, UVO

MMP2

 16

CLG4, CLG4A, MMP-2, MMP-II, MONA, TBE-1

CALB2

 16

CAB29, CAL2, CR

TP53

 17

BCC7, BMFS5, LFS1, P53, TRP53

TIMP2

 17

CSC-21K, DDC8

FASN

 17

FAS, OA-519, SDR27X1

BCL2

 18

Bcl-2, PPP1R50

HRAS

 18

H-RAS

XRCC1

 19

RCC, SCAR26

TGFB1

 19

CED, DPD1, IBDIMDE, LAP, TGF-beta1, TGFB, TGFbeta

CCNE1

 19

CCNE, pCCNE1

MIR524

 19

MIRN524, hsa-mir-524, mir-524

MMP9

 20

CLG4B, GELB, MANDP2, MMP-9

BMP2

 20

BDA2A, SSFSC, SSFSC1, BMP2

SNAI1

 20

SLUGH2, SNA, SNAH, SNAIL, SNAIL1, dJ710H13.1

JAG1

 20

AGS, AGS1, AHD, AWS, CD339, DCHE, HJ1, JAGL1

MCM5

 22

CDC46, MGORS8, P1-CDC46

TMSB4X

 X

FX, PTMB4, TB4X, TMSB4

 

  To conclude, the clinicopathological profile of AM has differed as regards its malignant transformation, extra-oral incidence, synchronous occurrence with other systematic syndromes, and response to conservative and adjunctive therapeutics.

 

 

Notes: None

Acknowledgements: None

Funding resources: None

Conflict of interest: The author declares that there is no conflict of interest to be reported.

 

 

References
[1]    Bonacina R, Indini A, Massazza G, et al. Correlation of BRAF mutational status with clinical characteristics and survival outcomes of patients with ameloblastoma: The experience of 11 Italian centres. J Clin Pathol. Epub ahead of print 2021. DOI: 10.1136/jclinpath-2021-207527.
[2]    da Silva Marcelino BMR, Parise GK, do Canto AM, et al. Comparison of immunohistochemistry and DNA sequencing for BRAF V600E mutation detection in mandibular Ameloblastomas. Appl Immunohistochem Mol Morphol 2021; 29: 390–393.
[3]    Khalele BAEO, Al-Shiaty RA. A novel marker of ameloblastoma and systematic review of immunohistochemical findings. Ann Diagn Pathol 2016; 22: 18–24.
[4]    Sant’Ana MSP, dos Santos Costa SF, da Silva MP, et al. BRAF p.V600E status in epithelial areas of ameloblastoma with different histological aspects: Implications to the clinical practice. J Oral Pathol Med 2021; 50: 478–484.
[5]    Andric M, Jacimovic J, Jakovljevic A, et al. Gene polymorphisms in odontogenic keratocysts and Ameloblastomas: A systematic review. Oral Diseases. Epub ahead of print 2021. DOI: 10.1111/odi.13865.
[6]    Atarbashi-Moghadam S, Atarbashi-Moghadam F, Sijanivandi S, et al. Ameloblastoma associated with syndromes: A systematic review. Journal of Stomatology, Oral and Maxillofacial Surgery 2020; 121: 146–149.
[7]    Khalele BAEO. The anecdote of viral etiopathogenia in ameloblastoma and odontogenic keratocyst: Why don’t we let it go? J Oral Biol Craniofacial Res 2017; 7: 101–105.
[8]    Hendra FN, Natsir Kalla DS, Van Cann EM, et al. Radical vs conservative treatment of intraosseous ameloblastoma: Systematic review and meta-analysis. Oral Diseases 2019; 25: 1683–1696.
[9]    Santos ES Dos, Rodrigues-Fernandes CI, Ramos JC, et al. Epigenetic alterations in Ameloblastomas: A literature review. J Clin Exp Dent 2021; 13: e295–e302.
[10] Akhila C, Sreenath G, Prakash A, et al. Expression of stem cell marker cytokeratin 19 in reduced enamel epithelium, dentigerous cyst and unicystic ameloblastoma - A comparative analysis. J Oral Maxillofac Pathol 2021; 25: 136–140.
[11]  Fuchigami T, Ono Y, Kishida S, et al. Molecular biological findings of ameloblastoma. Japanese Dental Science Review 2021; 57: 27–32.
[12] Ganjre A, Sarode G, Sarode S. Molecular characterization of metastasizing ameloblastoma: A comprehensive review. Journal of Cancer Research and Therapeutics 2019; 15: 455–462.