A systematic review of specific pathways in oral squamous cell carcinoma

Document Type : Type B: Systematic review and meta-analysis (with high level of evidence).

Authors

1 Department of Oral Pathology, Faculty of Dentistry, Mansoura University

2 King Saud University, Saudi Arabia

3 Horus University in Egypt (HUE)

Abstract

Background Oral squamous cell carcinoma (OSCC) eludes all therapeutic modalities because its etiological factors, molecular mechanisms, and pathways of carcinogenesis remain controversial.
Objective This systematic review aims to identify and investigate the specific pathways commonly documented in the published research on OSCC.

Results The most frequently studied pathways in OSCC, according to the reviewed molecular studies, are p53 tumor suppressor, collective Serine/Threonine Kinases, transcription factor NF-kB, integrins and cell proliferation, vascular endothelial growth factor, Wnt signaling, the PI3K/AKT pathway, cadherins and adhesion of epithelial cells and cyclooxygenase 2 pathways. However, the MEK/ERK pathway is computationally detected as a less frequent oncogenic pathway in OSCC.
Advances in Knowledge Although the former pathways have been extensively studied, other pathways are involved in the pathogenesis of OSCC, such as Notch signaling, cell death via Fas or TNFR1 Receptors, and the p38 MAPK pathway, remain understudied in OSCC. Future studies elucidating the contribution of these pathways in the development of OSCC are urgently required.
 

Keywords


  1. Agostini M, Silva SD, Zecchin KG, Coletta RD, Jorge J, Loda M, et al. Fatty acid synthase is required for the proliferation of human oral squamous carcinoma cells. Oral Oncol 2004;40(7):728-735.
  2. Shibata M, Kodani I, Osaki M, Araki K, Adachi H, Ryoke K, et al. Cyclo-oxygenase-1 and -2 expression in human oral mucosa, dysplasias and squamous cell carcinomas and their pathological significance. Oral Oncol 2005;41(3):304-312.
  3. Yanamoto S, Kawasaki G, Yoshitomi I, Iwamoto T, Hirata K, Mizuno A. Clinicopathologic significance of EpCAM expression in squamous cell carcinoma of the tongue and its possibility as a potential target for tongue cancer gene therapy. Oral Oncol 2007;43(9):869-877.
  4. Hoffmann TK, Sonkoly E, Hauser U, van Lierop A, Whiteside TL, Klussmann JP, et al. Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2008;44(12):1100-1109.
  5. Lee S-, Tseng L-, Li Y-, Tsai C-, Chang Y-. Heat shock protein 47 expression in oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells. J Oral Pathol Med 2011;40(5):390-396.
  6. Brusevold IJ, Aasrum M, Bryne M, Christoffersen T. Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro: Role of MEK/ERK, p38 and PI-3 kinase/Akt. J Oral Pathol Med 2012;41(7):547-558.
  7. Schiegnitz E, Kämmerer PW, Koch FP, Krüger M, Berres M, Al-Nawas B. GDF 15 as an anti-apoptotic, diagnostic and prognostic marker in oral squamous cell carcinoma. Oral Oncol 2012;48(7):608-614.
  8. Sweeny L, Zimmermann TM, Liu Z, Rosenthal EL. Evaluation of tyrosine receptor kinases in the interactions of head and neck squamous cell carcinoma cells and fibroblasts. Oral Oncol 2012;48(12):1242-1249.
  9. Gonzales CB, Kirma NB, De La Chapa JJ, Chen R, Henry MA, Luo S, et al. Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol 2014;50(5):437-447.
  10. Xie H, Huang S, Li W, Zhao H, Zhang T, Zhang D. Upregulation of Src homology phosphotyrosyl phosphatase 2 (Shp2) expression in oral cancer and knockdown of Shp2 expression inhibit tumor cell viability and invasion in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117(2):234-242.
  11. Yamada S-, Yanamoto S, Rokutanda S, Miyakoshi M, Naruse T, Kawakita A, et al. Co-overexpression of cortactin and CRKII increases migration and invasive potential in oral squamous cell carcinoma. J Oral Maxillofacial Surg Med Pathol 2014;26(1):14-21.
  12. Rauth S, Ray S, Bhattacharyya S, Mehrotra DG, Alam N, Mondal G, Nath P, Roy A, Biswas J, Murmu N. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol Cell Biochem. 2016 Jun;417(1-2):97-110. doi: 10.1007/s11010-016-2717-y. Epub 2016 May 20. PMID: 27206736.
  13. Ansell A, Jedlinski A, Johansson A-, Roberg K. Epidermal growth factor is a potential biomarker for poor cetuximab response in tongue cancer cells. J Oral Pathol Med 2016;45(1):9-16.
  14. Ribeiro IP, Rodrigues JM, Mascarenhas A, Kosyakova N, Caramelo F, Liehr T, et al. Cytogenetic, genomic, and epigenetic characterization of the hsc-3 tongue cell line with lymph node metastasis. J Oral Sci 2018;60(1):70-81.
  15. Kim H, Choi JY, Rah YC, Ahn J-, Kim H, Jeong W-, et al. ErbB3, a possible prognostic factor of head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;129(4):377-387.
  16. Almeida JP, Coletta RD, Silva SD, Agostini M, Vargas PA, Bozzo L, et al. Proliferation of fibroblasts cultured from normal gingiva and hereditary gingival fibromatosis is dependent on fatty acid synthase activity. J Periodontol 2005;76(2):272-278.
  17. Hatakeyama S, Mizusawa N, Tsutsumi R, Yoshimoto K, Mizuki H, Yasumoto S, et al. Establishment of human dental epithelial cell lines expressing ameloblastin and enamelin by transfection of hTERT and cdk4 cDNAs. J Oral Pathol Med 2011;40(3):227-234.
  18. Harris JI, Russell RRB, Curtis MA, Aduse-Opoku J, Taylor JJ. Molecular mediators of Porphyromonas gingivalis-induced T-cell apoptosis. Oral Microbiol Immunol 2002;17(4):224-230.
  19. Yang H, Bernanke JM, Naftel JP. Immunocytochemical evidence that most sensory neurons of the rat molar pulp express receptors for both glial cell line-derived neurotrophic factor and nerve growth factor. Arch Oral Biol 2006;51(1):69-78.
  20. Ramos-García P, Gil-Montoya JA, Scully C, Ayén A, González-Ruiz L, Navarro-Triviño FJ, et al. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis 2017;23(7):897-912.
  21. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899-2908. doi:10.1038/sj.onc.1208615
  22. Zedan W, Mourad MI, El-Aziz SM, Salamaa NM, Shalaby AA. Cytogenetic significance of chromosome 17 aberrations and P53 gene mutations as prognostic markers in oral squamous cell carcinoma. Diagn Pathol. 2015 Feb 22;10:2. doi: 10.1186/s13000-015-0232-1. 
  23. Matsuura T, Kawata VKS, Nagoshi H, Tomooka Y, Sasaki K, Ikawa S. Regulation of proliferation and differentiation of mouse tooth germ epithelial cells by distinct isoforms of p51/p63. Arch Oral Biol 2012;57(8):1108-1115.
  24. Cramer JD, Burtness B, Ferris RL. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral Oncol 2019;99.
  25. Strohl WR, Strohl LM. Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry. Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry; 2012. p. 1-650.
  26. Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol Cancer 2019;18(1).
  27. Zhen L, Fan D, Yi X, Cao X, Chen D, Wang L. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int J Clin Exp Pathol 2014;7(10):6438-6446.
  28. Peng Q, Deng Z, Pan H, Gu L, Liu O, Tang Z. Mitogen-activated protein kinase signaling pathway in oral cancer (Review). Oncol Lett 2018;15(2):1379-1388.
  29. Patmanathan SN, Johnson SP, Lai SL, Bernam SP, Lopes V, Wei W, et al. Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2. Sci Rep 2016;6.
  30. Hsieh M-, Chien S-, Lin J-, Yang S-, Chen M-. Polyphyllin G induces apoptosis and autophagy cell death in human oral cancer cells. Phytomedicine 2016;23(13):1545-1554.
  31. Lee J-, Chiang K-, Feng T-, Chen Y-, Chuang S-, Tsui K-, et al. The iron chelator, Dp44mT, effectively inhibits human oral squamous cell carcinoma cell growth in vitro and in vivo. Int J Mol Sci 2016;17(9).
  32. Utaipant T, Athipornchai A, Suksamrarn A, Chunsrivirot S, Chunglok W. Isomahanine induces endoplasmic reticulum stress and simultaneously triggers p38 MAPK-mediated apoptosis and autophagy in multidrug-resistant human oral squamous cell carcinoma cells. Oncol Rep 2017;37(2):1243-1252.
  33. Gkouveris I, Nikitakis N, Karanikou M, Rassidakis G, Sklavounou A. JNK1/2 expression and modulation of STAT3 signaling in oral cancer. Oncol Lett 2016;12(1):699-706.
  34. Lin C-, Chin H-, Lee S-, Chiu C-, Chung J-, Lin Z-, et al. Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ Toxicol 2019;34(9):983-991.
  35. Siavash H, Nikitakis NG, Sauk JJ. Signal transducers and activators of transcription: Insights into the molecular basis of oral cancer. Crit Rev Oral Biol Med 2004;15(5):298-307.
  36. Bunek J, Kamarajan P, Kapila YL. Anoikis mediators in oral squamous cell carcinoma. Oral Dis 2011;17(4):355-361.
  37. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6(12):909-923. doi:10.1038/nrc2012
  38. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489-501. doi:10.1038/nrc839
  39. Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257-262. doi:10.1016/s1535-6108(03)00248-4
  40. Harsha C, Banik K, Ang HL, Girisa S, Vikkurthi R, Parama D, et al. Targeting akt/mtor in oral cancer: Mechanisms and advances in clinical trials. Int J Mol Sci 2020;21(9).

..